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High Order Space-time Discontinuous Galerkin Cell Vertex
Scheme toward Compressible Navier Stokes Equations

Final Report to AFOSR
Grant Number: FA9550-10-1-0045

Reporting Period: April 1, 2010 - March 31, 2012

PI: Shuangzhang Tu

Jackson State University
Jackson, Mississippi, 39217, USA

This final report summarizes our major accomplishments on the research under AFOSR Grant FA9550-
10-1- 0045 during the project period between April 1, 2010 - March 31, 2012.

1 Background
This project continues our previous AFOSR project (Grant No. FA9550-08-1-0122) to extend and verify our
high order space-time cell vertex scheme (DG-CVS) toward solving the compressible Navier-Stokes equation.

The DG-CVS method integrates the best features of the space-time Conservation Element/Solution
Element (CE/SE) method [1] and the discontinuous Galerkin (DG) method [2]. The core idea is to construct a
staggered space-time mesh through alternate cell-centered CEs and vertex-centered CEs (cf. Fig. 1 (right))
within each time step. Inside each SE (cf. Fig. 1 (left)), the solution is approximated using high-order
space-time DG basis polynomials. The space-time flux conservation is enforced inside each CE using the
DG discretization. The solution is updated successively at the cell level and at the vertex level within each
physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time
discontinuous Galerkin cell-vertex scheme (DG-CVS).

DG-CVS equally works on higher dimensions on arbitrary grids. Figure 2 shows the conservation elements
and solution elements on quadrilateral meshes and triangular meshes. Obviously, the definitions of CEs and
SEs on higher dimensions are analogous to that for 1-D meshes (cf. Fig. 1). Figure 3 demonstrates the

Figure 1: Solution elements (SEs) and conservation elements (CEs) in the x � t domain. Left: solution
elements and right: conservation elements.
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Figure 2: Conservation elements (CEs) and solution elements (SEs) in the x� y� t domain. First row: CEs
for rectangular meshes, second row: CEs for triangular meshes, third row: SEs for rectangular meshes, and
fourth row: SEs for triangular meshes.
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Figure 3: Dual meshes for the solution updating at the cell level (in red) and the vertex level (in black).
Left: rectangular mesh and right: triangular mesh.

resulting dual mesh at the cell level and the vertex level for both rectangular meshes and triangular meshes,
respectively.

The main features of DG-CVS are summarized as follows:

• based on space-time formulation.
• arbitrary high-order accuracy in both space and time. Space and time are handled in a unified way

based on space-time flux conservation and high-order space-time discontinuous basis functions. This is
in contrast to semi-discrete methods where the temporal order of accuracy is limited by the Backward
Difference Formula (BDF) or the multi-step Runge-Kutta method.

• Riemann-solver free. DG-CVS does not need a (approximate) Riemann solver to provide numerical
fluxes as needed in finite volume or traditional DG methods. The Riemann-solver-free feature offers
two-fold advantages. First, this Riemann-solver-free approach eliminates some pathological behaviors
(e.g., carbuncle phenomenon, expansion shocks, etc.) associated with some Riemann solvers. Second,
it is suitable for any hyperbolic PDE systems whose eigenstructures are not explicitly known.

• reconstruction free. DG-CVS solves for the solution and its all spatial and temporal derivatives simul-
taneously at each space-time node, thus eliminating the need of reconstruction.

• suitable for arbitrary spatial meshes. The CE and SE definitions in DG-CVS are independent of the
underlying spatial mesh and the same definitions can be easily extended from 1-D to higher-dimensions
(cf. Fig. 2) without any ambiguity. Though not shown, the same CE and SE definitions also apply to
meshes with hanging nodes.

• highly compact regardless of order of accuracy. Only information at the immediate neighboring nodes
will be needed to update the solution at the new time level. Compactness eases the parallelization of
the flow solver.

In the previous project, the DG-CVS method has been developed for solving hyperbolic conservation laws
including the scalar advection equation and the compressible Euler equations.

2 Summary of Major Accomplishments
During the last two years, we have accomplished the following:

• Verified that the DG-CVS method solves the time-dependent diffusion equations as well as the advection

equations without any special care on diffusion terms. Thanks to the staggered space-time conserva-
tion elements, both the advective and diffusive flux are continuous and unique across the spatial cell
interface. Therefore, no extra reconstruction or recovery or ad hoc penalty and coupling terms are
needed to avoid the “variational crime” and ensure the consistency of the variational form for diffusive
terms. For this reason, DG-CVS is conceptually simper than other existing DG methods for diffusion
equations. This paves the way to solve compressible Navier-Stokes equations.
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• Conducted the convergence rate for diffusion equations. The convergence rate is L
2

optimal when the
degree of basis polynomials is odd and sub-optimal when the degree of basis polynomials is even. In
other words, DG-CVS is (p + 1)th order accurate for the solution and pth order accurate for the
solution gradients for odd p. When p is even, the convergence rate of DG-CVS is still optimal for
advection equations but sub-optimal for diffusion equations. In practice, one can choose the odd p for
best performance when solving advection-diffusion equations.

• Extended to more practical problems involving curved boundaries. The curved boundary is approxi-
mated by high-order geometric polynomials which is consistent with the high-order solution polyno-
mials. This is indispensable in high-order methods to avoid spurious entropy generation on the curved
boundary.

• Extended to solve the shallow water equations. The DG-CVS method provides an alternative Riemann-
solver free approach for shallow water equations. Being able to solve both Euler equations and shallow
water equations confirms that DG-CVS is truly a working Riemann-solver-free approach which can be
used to solve arbitrary conservation laws where eigenstructures are difficult to obtain (e.g., magneto-
hydrodynamics equations) in the future.

• Extended to solve the level set equation. The DG-CVS method is able to resolve the interface evolution
governed by the level set equation.

• Extended to solve moving-mesh problems. Thanks to the space-time nature of the DG-CVS method,
the geometric conservation law involving moving meshes is automatically satisfied. Therefore, the
DG-CVS method has great potentials in moving boundary problems (e.g., fluid-structure interaction).

3 Description of the Space-Time Discontinuous Galerkin Cell-Vertex
Scheme

The high-order space-time DG-CVS method is developed to solve the equations of the following type:
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� @g
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= 0 (1)

where u is the conservative state vector, f and g are advective flux vectors, and f
v

and g
v

are the diffusive
flux vectors.

3.1 Space-Time Discontinuous Galerkin Formulation

Following the idea of the discontinuous Galerkin (DG) method, an approximate solution Uh is sought within
each space-time solution element (SE), denoted as K. When restricted to the SE, Uh belongs to the finite
dimensional space U(K) such that

Assume all the components of the conservative variables inside each SE are approximated by polynomials
of the same degree, i.e

uh
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N
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j

(x, t) (2)

where {�
j

(x, t)}N
j=1

are some type of space-time polynomial basis functions defined within the solution
element, {s

j

}N
j=1

are the unknowns to be determined and N is the number of basis functions depending on
the degree of the polynomial function.

The first spatial derivative of the solution can be expressed in terms of the basis functions as follows.
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Currently, the polynomials based on the Taylor expansions are used as the basis functions. Note that,
for the Taylor polynomials, the derivatives of the polynomial are a subset of the original Taylor polynomials.
This allows efficient implementation when evaluating integrals involving products of the Taylor polynomials.
For example, the quadratic 2-D basis functions are tabulated in Table 1.
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Table 1: Derivatives of quadratic 2-D basis functions.
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Following the Galerkin orthogonality principle, multiply (1) with each of the basis functions �
i

(i =

1, 2, · · · , N) and integrate over a space-time CE to obtain the weak form
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d⌦ = 0, i = 1, 2, · · · , N (4)

where ⌦
K

is the space-time conservation element (CE) associated with the solution element K. Note that
the conservation element is identical to the solution element except for the volumeless vertical spike in the
solution element. The space-time flux conservation in weak form as in (4) is for each individual space-
time conservation element. Therefore, the current method can be considered as a space-time discontinuous
Galerkin method.

Integrating (4) by parts results in
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where H = (fh � fh
v

, gh � gh

v

, uh

) is the space-time flux tensor and n = (n
x

, n
y

, n
t

) is the outward unit
normal of the CE boundary, i.e. � = @⌦

K

, of the space-time conservation element (CE) under consideration.
Note that the partial integration is also performed on the time-dependent term, which is a salient difference
between space-time DG methods and semi-discrete DG methods. As can be seen, the formulation in (5)
contains both the volume integral and the surface integral.

3.2 Cell-Vertex Solution Updating Strategy

The DG-CVS inherits the core idea of the CE/SE method using a staggered space-time mesh to enforce
the space-time flux conservation. However, the construction of the staggered space-time slabs in DG-CVS
deviates from the CE/SE method. In DG-CVS, unknowns are stored at both vertices and cell centroids of
the spatial mesh, and the solutions at vertices and cell centroids are updated at different time levels within
each time step. At the beginning of each physical time step, the solution is assumed known at the vertices of
the mesh, either given as the initial condition or obtained from the previous time step. Inside each new time
step, the solution is updated in two successive steps. The first step updates the solution at cell centroids at
the half-time level (tn+1/2) based on the known vertex solutions at the previous time level (tn). The second
step updates the solution at vertices at the new time level (tn+1) based on the known cell solutions at the
previous half-time level (tn+1/2). The same process is repeated for new time steps.

The solution updating at the cell level or the vertex level is based on the key equation (5). First divide
the conservation element into the following portions:

• the interior volume ⌦
K

where the solution is associated with the space-time node at the new time level.
• the top surface �top where the solution is also associated with the space-time node at the new time

level.
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Figure 4: Illustration of space-time flux conservation on a 1-D cell-level CE. Left: stationary mesh and right:
moving mesh.

• the side surfaces �side where the solution is associated with the space-time node at the previous time
level.

• the bottom surfaces �bott where the solution is also associated with the space-time node at the previous
time level.

Correspondingly, Eq. (5) can be rearranged to yield
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where the left hand side contains the unknowns and the right hand side contains the known information.
Since the top and the bottom surface of the CE are horizontal, which leads to Hh · n = uh on the top

face and Hh · n = �uh on the bottom face, Eq. (6) can be simplified to
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To further illustrate the idea of enforcing the space-time flux conservation, consider the 1-D case shown
in Fig. 4. Suppose the solution at the spacetime node (m +

1

2

, n +

1

2

) is to be determined. Here, m and n
represents the spatial and the temporal locations of the space-time node, respectively. The boundaries of
the CE associated with the spacetime node (m +

1

2

, n +

1

2

) is divided into five sections �
1

, �
2

, �
3

, �
4

and
�

5

, as shown in Figure 4. Among these sections, �
1

belongs to the SE associated with node (m+

1

2

, n+

1

2

)

whose solutions are to be determined, �
2

and �
3

the SE associated with node (m,n) and �
4

and �
5

the SE
associated with node (m + 1, n). The interior volume of the conservation element is also associated with
node (m+

1

2

, n+

1

2

). Exactly the same idea can be applied to the multidimensional cases.
As can be seen, with this staggered space-time cell-vertex solution updating strategy, no Riemann-solver-

typed flux functions are needed for the interface flux. There is no “left state” and “right state” when evaluating
inter-cell fluxes as Riemann solvers do. We can see the Riemann-solver free DG-CVS method perfectly
captures all flow features (shock waves, contact discontinuities, etc.) without pathological phenomena such
as the expansion shock.

DG-CVS also solves moving mesh problems (Fig. 4 right) without special care. The Geometrical Con-
servation Law (GCL) which is vital on moving meshes is automatically satisfied by the space-time DG-CVS.
This is because the mesh speed is automatically accounted for in the outward unit normal n = (n

x

, n
y

, n
t

) of
the space-time faces of the CE. Note that n

t

is in general nonzero for moving meshes. Therefore, DG-CVS
is also suitable for problems with moving boundaries and/or r-typed mesh adaptation.
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3.3 Solving the Local Nonlinear Equation System

Eq. (7) is a nonlinear equation system for each space-time node. The Newton-Raphson iterative method is
employed to solve the system. To apply the Newton-Raphson method, Eq. (7) is first written in the form

G(s) = 0 (8)

by moving the right hand side of (7) to the left hand side. According to the Newton-Raphson method, the
solution can be updated iteratively by means of

s(⌧+1)

= s(⌧) � J�1G(s(⌧)) (9)

where the superscript ⌧ represents the iteration step. The Jacobian matrix J =

@G
@s .

To update s using Eq. (9), one can first compute the solution increment �s by solving

J�s = �G(s(⌧)) (10)

which is a linear equation system and can be solved by the LU-decomposition method. The solution is then
updated via s(⌧+1)

= s(⌧) + �s.
Inside each Newton iteration, a linear equation system must be solved. To improve the efficiency, the

Jacobian can be fixed during the iteration process. In the current implementation, the Jacobian is computed
only once using the initial solution u(0) before the iteration process. The Jacobian is then LU-decomposed
and remain unchanged during the iteration. Inside each iteration, only the right hand side of (10) is updated
and only the back substitution operations are performed. In practice, this fixed Jacobian Newton method
works very well and only slightly increases the number of iterations. However, the overall efficiency is greatly
improved.

3.4 Quadrature-free Implementation

As seen in Eq. (7), the DG-CVS formulation involves both surface integrals and volume integrals. An
appropriate quadrature rule (e.g., Gaussian quadrature rule) is typically used to numerically integrate the
surface and volume integrals. However, quadrature rules are expensive. A sufficiently large number of
quadratures points must be used to ensure the accuracy. When the employed basis polynomial is of degree
p, the quadrature rule must be exact for polynomials of degree 2p+1 for surface integrals and must be exact
for polynomials of degree 2p for volume integrals [3]. Therefore, the number of quadrature points increases
rapidly with the degree of polynomials in higher dimensions. Quadrature free implementation is desirable
to improve the efficiency of high order methods.

To allow the quadrature-free implementation, the spatial flux vectors must be expanded in terms of the
basis polynomials similar to those used to expand the conservative variables. For example, inviscid fluxes
can be expressed as

fh =

˜

N

X

j=1

sf
j

�
j

, and gh

=

˜

N

X

j=1

sg
j

�
j

. (11)

where ˜N is the number of basis polynomials of one degree higher than those to expand the conservative
variables as in Eq. (2). The requirement of using basis polynomials of degree p + 1 is necessary to ensure
the accuracy of the scheme in the case of nonlinear fluxes. The method based on the Cauchy-Kovalewski
(CK) procedure [4, 5] is especially suitable for our purpose. In the current implementation of DG-CVS, the
conservative variables are expanded using the Taylor polynomials. With the Taylor polynomials, the spatial
and temporal derivatives of the solution are explicitly available. Using the CK procedure, the space-time
derivatives of the flux vectors can be obtained using the space-time derivatives of the conservative variables.

Taylor polynomials of degree p have the following general form

�
j

= cx̃lỹm˜tn (12)

where c is a constant, x̃ = (x� x
0

)/�x, ỹ = (y� y
0

)/�y, and ˜t = (t� t
0

)/�t. Here (x
0

, y
0

, t
0

) is the location
of the space-time node whose solutions are to be solved. �x, �y and �t are the characteristic sizes of the local
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space-time conservation element. The scaling using �x, �y and �t helps to improve the condition number of
the local system. In (12), l, m, and n are integer exponents ranging from 0 to p and 0  l +m+ n  p.

Note that, for the Taylor polynomials, the derivatives of the polynomial are a subset of the original
Taylor polynomials. Therefore, the products �

i

�
j

, @�

i

@t

�
j

, @�

i

@x

�
j

and @�

i

@y

�
j

all have the forms similar to
(12). This fact allows efficient implementation when evaluating integrals involving various products of the
Taylor polynomials.

Such quadrature-free integration has been implemented in our DG-CVS solver to avoid the volume integral
and the integral over the top surface of the CE on the left hand side of Eq. (7). The main idea is to use the
divergence theorem [6] to reduce the volume integral to surface integrals and further to line integrals. And
finally the analytical formulae from [7] is used to evaluate the line integrals. The efficiency of the integration
is significantly increased with such quadrature-free technique. The benefit is higher for higher p.

3.4.1 Cauchy-Kovalewski Procedure

To implement quadrature-free integration, one must express the nonlinear flux vectors in terms of expan-
sions of basis polynomials used by the state vector. The method based on the Cauchy-Kovalewski (CK)
procedure[5, 4] is especially suitable for our purpose. In the current implementation of DG-CVS, the con-
servative variables are expanded using the Taylor polynomials. With the Taylor polynomials, the spatial
and temporal derivatives of the solution are explicitly available. Using the CK procedure, the space-time
derivatives of the flux vectors can be obtained using the space-time derivatives of the conservative variables.

To accomplish this goal, several methods can be used. The first possible method is based on the L
2

projection[8]. For example, to obtain the expansion of ⇢u2, one may express ⇢u2

=

(⇢u)(⇢u)

⇢

which leads to
⇢(⇢u2

) = (⇢u)(⇢u). The L
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projection method states that
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which is an ˜N ⇥ ˜N linear system and can be solved for
n

s⇢u
2

j

o

˜

N

j=1

. However, the left hand side matrix is not

a stationary mass matrix since ⇢ appears in the left hand side of Eq. (13). During the iterative process, the
matrix must be recomputed when ⇢ is updated. Therefore, the projection method is not quite efficient.

Another method is to reconstruct the flux vectors using the flux values at a nodal set [9] which is large
enough to support the reconstruction of polynomials of degree p + 1. The flux values at each is computed
using the conservative variables at that node. This method is especially suitable for elements where the
Lagrangian basis functions are clearly defined. With the Lagrangian polynomials, the functions can be
expanded using the nodal values.

Yet another method based on the Cauchy-Kovalewski (CK) procedure[5, 4] is especially suitable for our
purpose. In DG-CVS, the conservative variables are expanded using the Taylor polynomials. With the
Taylor polynomials, the spatial and temporal derivatives of the solution are explicitly available. Using the
CK procedure, the space-time derivatives of the flux vectors can be obtained using the space-time derivatives
of the conservative variables.

Following Dyson [5] and Dumbser et al. [4], the Cauchy-Kovalewski procedure which is based on the
multidimensional extension of the Leibniz rule can be formulated as
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etc. represents the binomial coefficients.

Note that Eq. (14) is used to evaluate the space-time derivatives of the product of any two space-
time functions f

1

and f
2

. For example, when f
1

= ⇢u and f
2

= u, the space-time derivatives of ⇢u2 can
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be obtained using Eq. (14). However, the space-time derivatives of u is not available since u is not a
conservative variable. Therefore, using Eq. (14) alone is not sufficient for our goal. Fortunately, Dumbser et
al. [4] present the following modified Leibniz rule to obtain the space-time derivatives of f

2
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space-time derivatives of f
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L(a,b,c)

⇤ (f
1

, f
2

) =

@a+b+cf
1

(x, y, t)f
2

(x, y, t)

@xaybtc
= (16)

a

X

i=0

b

X

j=0

c

X

k=0

✓

a
i

◆✓

b
j

◆✓

c
k

◆

@(a�i)+(b�j)+(c�k)f
1

@xa�i@yb�j@tc�k

· @
i+j+kf

2

@xi@yj@tk

�

with
@a+b+cf

2

@xaybtc
= 0

Therefore, to obtain the space-time derivatives of u, we just need to let f
1

= ⇢, f
2

= u and f
1

f
2

= ⇢u
and utilize Eqs. (15) and (16).

In this paper, Eqs. (14-16) are used to construct the flux expansions. Based on the above formulations,
the Cauchy-Kovalewski procedure can be summarized for the flux vectors of the Euler equations:

• Step 1: use Eqs. (15) and (16) to obtain the space-time derivatives of u and v from the known
space-time derivatives of ⇢, ⇢u and ⇢v.

• Step 2: use Eq. (14) to obtain the space-time derivatives of ⇢u2, ⇢uv, and ⇢v2 from the known
derivatives of ⇢u, ⇢v, u and v.

• Step 3: the space-time derivatives of the pressure P can be obtained readily since

P = (� � 1)

⇥

⇢E � 0.5(⇢u2

+ ⇢v2)
⇤

where ⇢E is a conservative variable.
• Step 4: the space-time derivatives of ⇢H can be readily obtained via ⇢H = ⇢E + P .
• Step 5: use Eq. (14) to obtain the space-time derivatives of ⇢Hu and ⇢Hv from the known derivatives

of ⇢H, u and v.

After all these five steps, all quantities in the flux vectors can be expanded in terms of the Taylor expansions.

3.4.2 Converting volume integrals to surface integrals

The integrand in the volume integral (cf. (7)) has the following general form

q(x, y, t) = q
1

(x, y)�xl

�ym�tn (17)

which results from the products between Taylor polynomials. Here, q
1

(x, y) is a non-polynomial spatial
function. For instance, in some applications, the source term cannot be explicitly expressed as an polynomial
function. So q

1

(x, y) is kept here without loss of generality. In (17), l, m, and n are integer exponents. For
notational simplicity, denote x̃ = �x = x� x

0

, ỹ = �y = y � y
0

, and ˜t = �t = t� t
0

. Then (17) becomes

q(x, y, t) = q
1

(x, y)x̃lỹm˜tn (18)

Computing volume integrals with integrands of the form as in (18) is equivalent to computing the moments
of arbitrary order of polyhedra. In the current case, the polyhedra are polygonal cylinders. The method of
using the divergence theorem explained in [6] is adopted to reduce the volume integral to surface integrals.
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To evaluate a scalar integral inside a space-time volume ⌦, i.e.
´
⌦

qd⌦, we first construct a vector function
Q(x, y, t) = Q

1

i
1

+Q
2

i
2

+Q
3

i
3

where i
1

, i
2

and i
3

denote the unit vectors along the x, y, and t-directions,
respectively, such that

q = r ·Q (19)
With the aid of the auxiliary function Q, one can convert the volume integral into a surface integral via

the divergence theorem as follows.ˆ
⌦

q(x, y, t)d⌦ =

ˆ
⌦

r ·Qd⌦ =

ˆ
@⌦

Q · nd� (20)

Without loss of generality, we can define the following for Q

Q
1

= 0, Q
2

= 0, and Q
3

(x, y, t) =

ˆ
q(x, y, t)dt+ c(x, y) (21)

to satisfy (19). In (21),
´
qdt is an indefinite integral with respect to t and c(x, y) is an arbitrary function

independent of t.
Substituting (21) into (20) to obtainˆ

⌦

q(x, y, t)d⌦ =

ˆ
@⌦

Q
3

n
t

dA =

ˆ
@⌦

✓ˆ
q(x, y, t)dt

◆

n
t

dA+

ˆ
@⌦

c(x, y)n
t

dA (22)

where n
t

is the t-component of the outward unit normal of the surface.´
@⌦

c(x, y)n
t

d� equals zero for enclosed surfaces since c(x, y) is independent of t and results in zero net
contributions. Therefore, it suffices to evaluate

´
⌦

qd⌦ via
ˆ
⌦

q(x, y, t)d⌦ =

ˆ
@⌦

✓ˆ
q(x, y, t)dt

◆

n
t

dA (23)

Since n
t

= 1 and n
t

= �1 on the top and bottom faces of the CE, respectively, (23) can be computed asˆ
⌦

q(x, y, t)d⌦ =

ˆ
�top

✓ˆ
q(x, y, t)dt

◆

dA

+

ˆ
�side

✓ˆ
q(x, y, t)dt

◆

n
t

dA�
ˆ
�bott

✓ˆ
q(x, y, t)dt

◆

dA (24)

Furthermore, on the top surface, ˜t = �t = 0, therefore, the first integral on the right hand side of Eq.
(24) is zero. (24) reduces toˆ

⌦

q(x, y, t)d⌦ =

ˆ
�side

✓ˆ
q(x, y, t)dt

◆

n
t

dA�
ˆ
�bott

✓ˆ
q(x, y, t)dt

◆

dA (25)

For simple polynomials, the indefinite integral can be evaluated analytically, i.e.ˆ
q(x, y, t)dt = q

1

(x, y)x̃lỹm
ˆ

˜tndt =

1

n+ 1

q
1

(x, y)x̃lỹm˜tn+1 (26)

Substituting (26) into (25) and considering the fact that ˜t is constant on the horizontal bottom face of
the CE leads to ˆ

⌦

q(x, y, t)d⌦ =

1

n+ 1

ˆ
�side

�

q
1

(x, y)x̃lỹm˜tn+1

�

n
t

dA

� 1

n+ 1

˜tn+1

ˆ
�bott

q
1

(x, y)x̃lỹmdA (27)

As can be seen, the volume integral
´
⌦

q(x, y, t)d⌦ has been reduced to a surface integral (27) which can
be integrated numerically using the Gaussian rule.

The integrals in (27) do not need to be computed in an exclusive subroutine. Instead, they can be
computed in the same subroutine where the surface integrals on the right hand side of Eq. (7) are evaluated
using the Gaussian quadrature rule. Therefore, the extra cost of computing (27) is trivial.
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4 Major Progress #1: Solving Advection-Diffusion Equations

4.1 Grid Convergence Study

An important measurement of the performance of any high-order method is its convergence order of accuracy.
In the context of finite element-based methods, when basis polynomials of degree p is used, and if the
solution u and the solution gradient u

x

are approximated using Eqs. (2) and (3), respectively, then the
optimal convergence orders are p+ 1 for the solution u and p for the solution gradient. Theoretical analysis
of convergence orders of high-order methods is difficult, it not impossible. However, the convergence order
can be easily determined numerically via the grid convergence study with appropriate error norms. In this
sub-section, the grid convergence study is conducted on the 1-D advection-diffusion equation and the 2-D
heat equation. The convergence behavior of DG-CVS for the advection equation and the diffusion equation
will be compared.

To determine the numerical convergence order, the following error norms are defined:

l1(✏) =

nv
max

i=1

|uh

(x
i

)� uexact

(x
i

)|

l
2

(✏) =

v

u

u

t

1

n
v

nv
X

i=1

(uh

(x
i

)� uexact

(x
i

))

2 (28)

L
2

(✏) =

v

u

u

t

1

|⌦|

nv
X

i=1

ˆ
⌦

i

�

uh

i

(x)� uexact

i

(x)
�

2 d⌦

where nv is the number of vertices in the computational domain, uh

(x
i

) is the computed numerical solution
at ith vertex and uexact

(x
i

) is the analytical solution at the ith vertex, ⌦
i

is the spatial domain associated
with the ith vertex and |⌦| is the size of the entire computational domain. Here, l1 and l

2

norms are
evaluated at the discrete location of vertices and L

2

norm is obtained by integrating the continuous solution
within the spatial domain associated with each vertex.

4.1.1 Convergence Orders on 1-D Meshes

The first test is to solve the following 1-D linear scalar advection-diffusion equation

@u

@t
+ a

@u

@x
� ⌫

@2u

@x2

= 0, �1  x  1

(29)
u(x, 0) = u

0

(x) = sin(⇡x), periodic b.c.

The analytical solution is given as

uexact = e�⇡

2
⌫t

sin(⇡(x� at))

The following two cases are tested:

• pure advection equation. a = 1.0, ⌫ = 0.
• heat equation. a = 0, ⌫ = 1.0.

For each case, four meshes (number of cells nc = 10, 20, 40, and 80) are used for varying degrees of basis
polynomials (p = 1, 2, 3, and 4).

For the advection case, the time step is chosen as �t = ��x/a where �x is the cell interval and the Courant
number � = 0.5, 0.3125, 0.25 and 0.25 for p1, p2, p3 and p4 cases, respectively. For the stability limits in
the case of advection equations, one can refer to our earlier paper[10]. All cases are computed up to t = 1.0.
The numerical convergence orders using the l1, l

2

and L
2

norms are recorded in Tables 2, 3 and 4. All three
tables show that the numerical convergence orders are p+ 1 for u and p for u

x

for all p’s. The convergence
orders are optimal.

For the diffusion case, the time step is chosen as �t = 0.1�x2/⌫ for all p1 � p4 cases. All cases are
computed up to t = 0.1. The numerical convergence orders based on various norms are recorded in Tables 5
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Table 2: 1-D advection equation. a = 1.0, t = 1.0. Numerical convergence order determined by l1 norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable l1(✏) l1(✏) order l1(✏) order l1(✏) order comments

1 u 2.11E-02 4.88E-03 2.113 1.13E-03 2.112 2.70E-04 2.064 optimal

u
x

1.08E-01 4.38E-02 1.301 2.09E-02 1.071 1.03E-02 1.016 optimal

2 u 2.13E-04 2.77E-05 2.946 3.51E-06 2.979 4.41E-07 2.995 optimal

u
x

2.89E-02 7.18E-03 2.008 1.79E-03 2.001 4.48E-04 2.000 optimal

3 u 2.56E-05 1.58E-06 4.019 9.71E-08 4.023 6.04E-09 4.007 optimal

u
x

4.04E-04 6.03E-05 2.742 7.80E-06 2.951 9.83E-07 2.989 optimal

4 u 4.18E-07 1.28E-08 5.031 3.90E-10 5.037 1.25E-11 4.965 optimal

u
x

5.59E-05 3.51E-06 3.992 2.21E-07 3.991 1.39E-08 3.990 optimal

Table 3: 1-D advection equation. a = 1.0, t = 1.0. Numerical convergence order determined by l
2

norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable l2(✏) l2(✏) order l2(✏) order l2(✏) order comments

1 u 1.48E-02 3.36E-03 2.134 7.88E-04 2.095 1.90E-04 2.055 optimal

u
x

7.71E-02 3.07E-02 1.330 1.46E-02 1.071 7.25E-03 1.010 optimal

2 u 1.61E-04 2.02E-05 2.994 2.52E-06 3.006 3.14E-07 3.006 optimal

u
x

2.13E-02 5.20E-03 2.037 1.28E-03 2.018 3.19E-04 2.009 optimal

3 u 1.76E-05 1.09E-06 4.013 6.79E-08 4.009 4.24E-09 3.999 optimal

u
x

2.86E-04 4.18E-05 2.774 5.45E-06 2.940 6.91E-07 2.981 optimal

4 u 3.12E-07 9.28E-09 5.069 2.79E-10 5.057 8.93E-12 4.964 optimal

u
x

4.13E-05 2.54E-06 4.022 1.58E-07 4.008 9.89E-09 3.999 optimal

Table 4: 1-D advection equation. a = 1.0, t = 1.0. Numerical convergence order determined by L
2

norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 1.17E-02 2.79E-03 2.064 6.87E-04 2.020 1.71E-04 2.006 optimal

u
x

4.04E-01 2.03E-01 0.993 1.02E-01 0.998 5.09E-02 0.999 optimal

2 u 5.73E-04 7.21E-05 2.990 9.03E-06 2.997 1.13E-06 2.999 optimal

u
x

3.66E-02 9.21E-03 1.990 2.31E-03 1.998 5.77E-04 1.999 optimal

3 u 2.55E-05 1.64E-06 3.961 1.03E-07 3.988 6.47E-09 3.997 optimal

u
x

2.31E-03 2.94E-04 2.975 3.69E-05 2.992 4.62E-06 2.998 optimal

4 u 8.02E-07 2.50E-08 5.005 7.80E-10 5.002 2.46E-11 4.986 optimal

u
x

1.00E-04 6.25E-06 3.999 3.90E-07 4.002 2.45E-08 3.996 optimal
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Table 5: 1-D heat equation. ⌫ = 1.0, t = 0.1. Numerical convergence order determined by l1 norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable l1(✏) l1(✏) order l1(✏) order l1(✏) order comments

1 u 9.72E-03 2.62E-03 1.894 6.58E-04 1.991 1.65E-04 1.998 optimal

u
x

3.04E-02 7.82E-03 1.959 1.97E-03 1.990 4.93E-04 1.997 super-optimal

2 u 1.32E-03 3.70E-04 1.838 9.40E-05 1.977 2.36E-05 1.994 sub-optimal

u
x

3.17E-02 8.28E-03 1.936 2.09E-03 1.983 5.25E-04 1.996 optimal

3 u 7.29E-05 5.10E-06 3.836 3.24E-07 3.976 2.03E-08 3.994 optimal

u
x

5.08E-05 3.66E-06 3.792 2.37E-07 3.948 1.50E-08 3.987 super-optimal

4 u 5.14E-06 3.23E-07 3.993 1.99E-08 4.020 1.24E-09 4.006 sub-optimal

u
x

2.79E-05 1.77E-06 3.974 1.11E-07 3.992 6.98E-09 3.998 optimal

Table 6: 1-D heat equation. ⌫ = 1.0, t = 0.1. Numerical convergence order determined by l
2

norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable l2(✏) l2(✏) order l2(✏) order l2(✏) order comments

1 u 6.89E-03 1.81E-03 1.933 4.60E-04 1.974 1.16E-04 1.989 optimal

u
x

2.25E-02 5.66E-03 1.988 1.41E-03 2.006 3.51E-04 2.006 super-optimal

2 u 9.38E-04 2.55E-04 1.877 6.57E-05 1.959 1.66E-05 1.985 sub-optimal

u
x

2.34E-02 5.99E-03 1.965 1.50E-03 2.000 3.74E-04 2.004 optimal

3 u 5.16E-05 3.52E-06 3.875 2.26E-07 3.959 1.43E-08 3.985 optimal

u
x

3.75E-05 2.65E-06 3.822 1.70E-07 3.964 1.07E-08 3.995 super-optimal

4 u 3.65E-06 2.23E-07 4.032 1.39E-08 4.002 8.71E-10 3.997 sub-optimal

u
x

2.06E-05 1.28E-06 4.003 7.98E-08 4.008 4.97E-09 4.006 optimal

and 6 and 7. Comparing with the optimal convergence rates for the advection equation, one can see that the
convergence rates for the diffusion equation appear inconsistent. For clarity’s sake, the following observations
from Tables 5 and 6 and 7 are summarized:

• When p is odd,

– the convergence rates based on the l1 and l
2

norms are optimal for u and super-optimal for u
x

.
– the convergence rates based on the L

2

norm are optimal for both u and u
x

.

• When p is even, the convergence rates based on all norms are sub-optimal for u and optimal for u
x

.

Since l-norms do not produce the same convergence orders for the heat equation as those for the advection
equation no matter whether p is odd or even, while the convergence orders based on the L

2

-norm are optimal
for both the heat equation and the advection equation when p is odd, this indicates that L

2

-norm is a more
appropriate norm for determining the convergence order. We will focus on L

2

-norm in the remaining tests.
The inconsistent convergence behavior between odd degree and even degree approximations has also been

reported in the methods of many other researcher [11, 12, 13, 14, 15]. It is also interesting to note that the
first version of the central LDG method by Liu et al.[16] is sub-optimal first order accurate for p = 1 and
optimal (p+ 1)th order accurate for p > 1.

4.1.2 Convergence Orders on 2-D Structured and Unstructured Meshes

To investigate the convergence behavior of DG-CVS for 2-D diffusion equations, rectangular and unstructured
triangular meshes with various resolutions are used. Figure 5 shows the coarsest rectangular and unstructured
triangular meshes used in the test. The coarsest rectangular mesh is composed of 10 ⇥ 10 rectangular cells
and is designated as “qua-10”. The coarsest triangular mesh is designated as “tri-10” whose edge resolution
is comparable to that of mesh qua-10. The meshes will be refined isotropically several times in the grid
convergence study, resulting in a series of meshes designated as “qua-20”, “qua-40”, “qua-80”, “tri-20”, “tri-40”
and “tri-80”, respectively.
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Table 7: 1-D heat equation. ⌫ = 1.0, t = 0.1. Numerical convergence order determined by L
2

norm.

nc = 10 nc = 20 nc = 40 nc = 80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 4.90E-03 1.24E-03 1.982 3.11E-04 1.995 7.78E-05 1.999 optimal

u
x

1.49E-01 7.50E-02 0.994 3.75E-02 0.999 1.88E-02 1.000 optimal

2 u 1.22E-03 2.78E-04 2.130 6.75E-05 2.042 1.68E-05 2.011 sub-optimal

u
x

1.54E-02 3.93E-03 1.965 9.90E-04 1.991 2.48E-04 1.998 optimal

3 u 3.70E-05 2.45E-06 3.918 1.55E-07 3.978 9.76E-09 3.994 optimal

u
x

6.50E-04 8.09E-05 3.006 1.01E-05 3.000 1.26E-06 3.000 optimal

4 u 3.92E-06 2.30E-07 4.094 1.41E-08 4.025 8.77E-10 4.007 sub-optimal

u
x

3.75E-05 2.15E-06 4.128 1.31E-07 4.034 8.14E-09 4.008 optimal

Figure 5: Two-dimensional meshes used in the tests. Left: rectangular mesh. Right: unstructured triangular
mesh.
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Table 8: 2-D heat equation with sinusoidal initial solution on rectangular meshes. ⌫ = 1.0, t = 0.1. Numerical
convergence order determined by the L

2

norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 4.27e-03 1.09e-03 1.970 2.73e-04 1.997 6.84e-05 1.997 optimal

u
x

and u
y

7.81e-02 3.94e-02 0.987 1.98e-02 0.993 9.89e-03 1.001 optimal

2 u 8.37e-04 2.02e-04 2.051 5.00e-05 2.014 1.25e-05 2.000 sub-optimal

u
x

and u
y

1.24e-02 3.21e-03 1.950 8.11e-04 1.985 2.03e-04 1.998 optimal

3 u 5.43e-05 3.73e-06 3.864 2.39e-07 3.964 1.51e-08 3.984 optimal

u
x

and u
y

1.28e-03 1.58e-04 3.018 1.97e-05 3.004 2.47e-06 2.996 optimal

4 u 2.92e-06 1.68e-07 4.119 1.05e-08 4.000 6.54e-10 4.005 sub-optimal

u
x

and u
y

1.01e-04 6.06e-06 4.059 3.75e-07 4.014 2.34e-08 4.002 optimal

Table 9: 2-D heat equation with sinusoidal initial solution on triangular meshes. ⌫ = 1.0, t = 0.1. Numerical
convergence order determined by the L

2

norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 4.82e-03 1.25e-03 1.947 3.22e-04 1.957 8.12e-05 1.988 optimal

u
x

7.26e-02 3.64e-02 0.996 1.82e-02 1.000 9.13e-03 0.995 optimal

u
y

7.25e-02 3.64e-02 0.994 1.82e-02 1.000 9.13e-03 0.995 optimal

2 u 1.37e-03 3.46e-04 1.985 8.65e-05 2.000 2.17e-05 1.995 sub-optimal

u
x

9.07e-03 2.30e-03 1.979 5.80e-04 1.988 1.46e-04 1.990 optimal

u
y

9.03e-03 2.29e-03 1.979 5.78e-04 1.986 1.45e-04 1.995 optimal

3 u 3.14e-05 2.02e-06 3.958 1.28e-07 3.980 8.07e-09 3.987 optimal

u
x

7.30e-04 9.23e-05 2.983 1.16e-05 2.992 1.46e-06 2.990 optimal

u
y

7.30e-04 9.23e-05 2.983 1.16e-05 2.992 1.46e-06 2.990 optimal

4 u 2.15e-06 1.33e-07 4.015 8.35e-09 3.994 5.27e-10 3.986 sub-optimal

u
x

4.62e-05 2.96e-06 3.964 1.88e-07 3.977 1.19e-08 3.982 optimal

u
y

4.62e-05 2.96e-06 3.964 1.88e-07 3.977 1.19e-08 3.982 optimal

The following 2-D heat equation with sinusoidal initial solution is solved using DG-CVS.

@u

@t
� ⌫

✓

@2u

@x2

+

@2u

@y2

◆

= 0, �1  x, y  1

(30)
u(x, y, 0) = sin(⇡(x+ y)), periodic b.c.

The analytical solution is given as

uexact = e�2⇡

2
⌫t

sin(⇡(x+ y))

The time step is chosen to be �t = �h2/⌫ where h is the local characteristic size of the element and
� = 0.2 for p1 cases and � = 0.1 for all other cases. Table 8 and Table 9 show the convergence orders on
rectangular meshes and triangular meshes, respectively. Both tables show the same convergence rates which
indicates the convergence orders are independent on the type of the spatial mesh. In addition, the same
convergence rates as those in Table 7 for the 1-D heat equation are observed, that is, the convergence orders
are optimal for both u and its gradient when p is odd, and sub-optimal for u and optimal for u’s gradients
when p is even.

4.2 More Tests on 2D Scalar Advection-Diffusion Equation

In this sub-section, we provide two more test cases. Both cases involve time dependent boundary conditions.
The first case is the 2-D heat equation with the delta initial solution, and the second case is the 2-D nonlinear
viscous Burgers equation.
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Figure 6: Solution of 2-D heat equation with the delta initial solution. Top row: solutions on the rectangular
mesh qua-50 and bottom row: solutions on the triangular mesh tri-50. Left column: solution at t = 0.01,
middle column: solution at t = 0.05 and right column: solution at t = 0.2.

From the previous tests, one can conclude that the convergence orders based on the L
2

norm is optimal
for both the solution and its gradients when p is odd. Besides, this optimality holds for both the advection
and diffusion equations. Since in practice, the governing equations often involve both advection and diffusion
simultaneously, it justifies to employ basis polynomials of odd degrees for best and consistent convergence
rates. Therefore, in the remaining test cases, only results of odd p will be presented.

4.2.1 2-D Heat Equation with the Delta Initial Solution

This case is to solve the following 2-D heat equation using DG-CVS.

@u

@t
�

✓

@2u

@x2

+

@2u

@y2

◆

= 0, �1  x, y  1

(31)
u(x, y, 0) = u

0

where u
0

is the delta function at the origin of the domain (0, 0). The solution to Eq. (31) with such an
initial condition is called the fundamental solution of the heat equation[17]. The analytical solution is given
as

uexact =

1

4⇡t
e

⇣
� x

2+y

2

4t

⌘

The boundary conditions on the four boundaries are time varying depending on the above analytical solution
formula.

The time step is chosen to be �t = �h2 where h is the local characteristic size of the element and � = 0.2
for the p1 case and � = 0.1 for the p3 case. Figure 6 shows the carpet view of the solution at three instants,
t = 0.01, t = 0.05, and t = 0.2, on both the rectangular and triangular meshes, respectively.
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Table 10: 2-D heat equation with delta initial solution on rectangular meshes. t = 0.05. Numerical conver-
gence order determined by L

2

norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 1.20e-02 3.12e-03 1.943 7.88e-04 1.985 1.98e-04 1.993 optimal

u
x

and u
y

2.53e-01 1.28e-01 0.983 6.43e-02 0.993 3.22e-02 0.998 optimal

3 u 4.53e-04 3.33e-05 3.766 2.19e-06 3.927 1.38e-07 3.988 optimal

u
x

and u
y

6.82e-03 7.78e-04 3.132 9.38e-05 3.052 1.15e-05 3.028 optimal

Table 11: 2-D heat equation with delta initial solution on triangular meshes. t = 0.05. Numerical convergence
order determined by L

2

norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 1.15e-02 3.02e-03 1.929 7.71e-04 1.970 1.95e-04 1.983 optimal

u
x

2.23e-01 1.12e-01 0.994 5.64e-02 0.990 2.83e-02 0.995 optimal

u
y

2.32e-01 1.17e-01 0.988 5.85e-02 1.000 2.93e-02 0.998 optimal

3 u 1.72e-04 1.11e-05 3.954 6.99e-07 3.989 4.37e-08 4.000 optimal

u
x

4.12e-03 5.00e-04 3.043 6.17e-05 3.019 7.69e-06 3.004 optimal

u
y

4.46e-03 5.42e-04 3.041 6.71e-05 3.014 8.35e-06 3.006 optimal

Tables 10 and 11 show the convergence rates of p1 and p3 approximations on rectangular and triangular
meshes, respectively. Not surprisingly, the convergence rates are optimal for all cases.

In Fig. 7, the solution u and its gradient u
x

along the horizontal line y = 0 are shown together with the
analytical solutions at t = 0.05. To visually compare the accuracy between p1 and p3 results, we intentionally
choose a coarse 20 ⇥ 20 mesh. As can be seen, the p1 solution is not accurate enough to resolve the local
extrema. By contrast, the p3 solution lies on top of the analytical solution.

4.2.2 2-D Viscous Burgers Equation

Finally, the following 2-D viscous Burgers equation is solved using DG-CVS.

@u

@t
+ u

@u

@x
+ u

@u

@y
� ⌫

✓

@2u

@x2

+

@2u

@y2

◆

= 0, 0  x, y  25 (32)

with the analytical solution given as

uexact =

2

e
x�x

c

+y�y

c

�2t
⌫

+ 1

where (x
c

, y
c

) = (0, 0) is a constant location.
The 1-D version of this case was presented in [18]. This case is constructed such that the original wave

is propagated without changing shape under the effect of both nonlinear advection and linear diffusion. The
initial solution at t = 0 and the boundary conditions on all four boundaries are provided by the analytical
solution. Therefore the boundary conditions are time dependent.

We first conduct the grid convergence study on this nonlinear advection-diffusion case. In the study,
⌫ = 2.5 is chosen and the simulation is run up to t = 10. In the current study, the time step is chosen as
�t = �min(h/a, h2/⌫) where h is the local mesh size and � = 0.2 for the p1 case and � = 0.1 for the p3
case. For the purpose of determining the convergence rates, this choice of time steps may not be appropriate
since advection and diffusion have different time scales. A more appropriate approach may be the operator
splitting method where the advection and the diffusion are treated with different time steps. Tables 12
and 13 show the convergence rates of p1 and p3 on rectangular and triangular meshes, respectively. The
convergence rates, though not as neat as those for the pure diffusion equation, are still close to optimal.

To further demonstrate the accuracy of DG-CVS for various values of ⌫, the following three cases are
simulated on both qua-50 and tri-50 meshes where the size of the mesh is indicated by �x = 0.5:
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Figure 7: Comparison between p1 and p3 solutions on the 20 ⇥ 20 mesh at y = 0 and t = 0.05 for the case
of the fundamental solution of the 2-D heat equation.

Table 12: Solution of 2-D viscous Burgers equation on rectangular meshes. ⌫ = 2.5, t = 10. Numerical
convergence order determined by L

2

norm.

qua-10 qua-20 qua-40 qua-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 1.38e-02 3.15e-03 2.131 7.71e-04 2.031 1.92e-04 2.006 optimal

u
x

and u
y

1.74e-02 8.52e-03 1.030 4.21e-03 1.017 2.09e-03 1.010 optimal

3 u 2.83e-04 1.69e-05 4.066 1.11e-06 3.928 7.88e-08 3.816 optimal

u
x

and u
y

7.11e-04 9.12e-05 2.963 1.19e-05 2.938 1.61e-06 2.886 optimal

Table 13: Solution of 2-D viscous Burgers equation on triangular meshes. ⌫ = 2.5, t = 10. Numerical
convergence order determined by L

2

norm.

tri-10 tri-20 tri-40 tri-80

p variable L2(✏) L2(✏) order L2(✏) order L2(✏) order comments

1 u 8.08e-03 2.19e-03 1.883 5.49e-04 1.996 1.38e-04 1.992 optimal

u
x

1.54e-02 7.79e-03 0.983 3.86e-03 1.013 1.93e-03 1.000 optimal

u
y

1.54e-02 7.79e-03 0.983 3.86e-03 1.013 1.93e-03 1.000 optimal

3 u 1.70e-04 1.21e-05 3.812 1.00e-06 3.597 1.03e-07 3.279 optimal

u
x

4.16e-04 5.31e-05 2.970 6.44e-06 3.044 7.96e-07 3.016 optimal

u
y

4.16e-04 5.34e-05 2.962 6.48e-06 3.043 8.02e-07 3.014 optimal
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Figure 8: p1 solution of 2-D viscous Burgers equation along the diagonal line x � y = 0 at t = 20. Left:
⌫ = 0.05, middle: ⌫ = 1.0, and right: ⌫ = 2.5.
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Figure 9: u
x

or u
y

of the 2-D viscous Burgers equation with ⌫ = 0.5 along the diagonal line at t = 20. Left:
p1 solution and right: p3 solution.

• short wave (�x/⌫ = 10, i.e. ⌫ = 0.05).
• medium wave (�x/⌫ = 1, i.e. ⌫ = 0.5).
• long wave (�x/⌫ = 0.2, i.e. ⌫ = 2.5).

Figure 8 plots the p1 solution along the diagonal line x � y = 0 together with the exact solution. As can
be seen, all types of waves have been captured accurately in terms of both location and magnitude. In the
case of the short wave, no limiter is applied and therefore slight overshoot and undershoot can be seen.
The p3 solution is not shown since no much visual difference can be seen between the p3 solution and the
p1 solution. Figure 9 compares the computed solution gradients (u

x

or u
y

) with the exact solution for the
case of ⌫ = 0.5. As can be seen, the p3 solution is superior to the p1 solution in resolving the local sharp
extremum of the solution gradient.

5 Major Progress #2: Solving Euler Equations Involving Curved
Boundaries

Progress has been made to solve flow problems involving curved boundaries. Here two examples are presented
to demonstrate the capability of handling curved boundaries.

5.1 Flow around a Circular Cylinder

The first example is a subsonic flow with M = 0.1 around a circular cylinder. The far-field boundary is
located at 30 diameters from the center of the circle. The mesh contains 24⇥ 10 quadrilateral cells. Figure
10 shows the Mach number distributions from the second-order (p1), third order (p2) and fourth order (p3)
simulations, respectively. Obviously, high-order solutions are superior to lower order ones on the same coarse
mesh. Figure 11 compares the steady-state pressure distribution on the cylinder surface with the analytical
solution. Again, p3 solution is the most accurate.

19



Figure 10: Mach number field of the subsonic flow (M = 0.1) around a circular cylinder on a 24 ⇥ 10

quadrilateral mesh. Left: p1 solution, middle: p2 solution, and right: p3 solution.
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Figure 11: Pressure on the surface of the circular cylinder on a 24⇥10 quadrilateral mesh. Left: p1 solution,
middle: p2 solution, and right: p3 solution.
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Figure 12: Subsonic flow around NACA0012 airfoil. Left: pressure field. Right: Mach number field.

5.2 Flow around NACA0012 Airfoil

The second example is a subsonic flow with Mach 0.63, AoA = 2

� around the NACA0012 airfoil with curved
boundary. The mesh contains 1536 quadrilateral cells with 64 cells on the airfoil surface. Figure 12 shows
the p3 solution. As can be seen, the contour lines are smooth near the boundary including the trailing edge.

6 Major Progress #3: Solving Shallow Water Equations
The shallow water equations (SWE) are widely used as the mathematical model to numerically simulate
the dam break, river inundation, failure of levees and tide of ocean in coastal and civil engineering. When
the characteristic vertical velocity is small in comparison with the characteristic horizontal velocity, which
happens when the characteristic vertical length scale is much smaller than the characteristic horizontal length
scale, the incompressible Navier-Stokes equations can be simplified to the shallow water equations (SWE)
by depth averaging the NSE in the vertical direction.

The frictionless shallow water equation can be expressed in the following conservative form

@u

@t
+

@f

@x
+

@g

@y
= r(u) (33)

in which the conservative vector, flux vectors and source vector are
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2

4
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Huv
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Hv
Huv

Hv2 + gH2/2

3

5 , and r =

2

4

0

gHS
0x
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3

5

respectively. Here, the total water depth H(x, t) = ⇣(x, t) + d(x) where ⇣(x, t) is the free-surface elevation
and d(x) is the still water depth. u and v are the x- and y-component of the depth-averaged velocity. g is
the acceleration due to gravity. S

0x

and S
0y

are the bottom slopes in x- and y-directions, respectively.
Equation (33) is a hyperbolic nonlinear system. There is close mathematical and physical analogy be-

tween the shallow water flows and compressible flows. The hydraulic jumps and bores are analogous to the
stationary and moving shock waves in compressible gas flows. Therefore, the numerical methods used to
solve the SWE often mimic those for solving the compressible Euler equations.

The current DG-CVS method provides a Riemann-solver-free alternative approach to solve the shallow
water equations. Here, several numerical examples are provided to test the accuracy of the DG-CVS based
solver on solving the shallow water equations. In all the simulations, the reference velocity is chosen according
to

Uref =
q

gLref
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Figure 13: Water elevation carpet view of the 2-d shocktube problem. Left: t = 0.0, middle: t = 1.0 and
right: t = 2.0.

where g is the acceleration due to gravity and Lref is some reference length. Nondimensionalization based
on these quantities leads to that the nondimensional g is unity. In addition, all simulations assume flat water
bed.

6.1 2-D Dam Break Problem

The first case is a two-dimensional dam break problem which is analogous to the shock tube problem used
to verify a compressible Euler solver. The computational domain is a [�5, 5] ⇥ [�5, 5] rectangular region.
At t = 0, the water height is 3 within the lower left corner [�5, 0] ⇥ [�5, 0], and the rest of the domain is
filled with water of height 1. The left and the bottom boundaries are symmetry ones. Figure 13 shows the
carpet view of the water elevation at three time instants. The solution is obtained using the fourth order
basis functions on the 99 ⇥ 99 mesh. As can be seen, the complex wave structures have been captured in
the simulation. Note that no any type of solution limiting is employed in the simulation. Therefore, slight
wiggles can be seen behind the water jump. Figure 14 shows the water elevation and momentum along one
of the symmetry boundaries at times up to t = 2.0. The water jump discontinuity is captured sharply.

6.2 Gaussian Pulse Problem

The second case is to simulate the evolution of a Gaussian water depth perturbance. This problem is indeed
one-dimensional but is simulated on a 2-D computational domain as shown in Fig. 15. The fourth order (p3)
simulation is performed again. Figures 15 and 16 shows similar information to those in Figs. 13 and 14 in
the previous example. As can be seen, the two waves propagate to two opposite directions and get steeper
and steeper.

6.3 2-D Dam Break Problem

The last example is a more realistic classical benchmark problem to verify a shallow water equation solver.
Figure 17 depicts the domain geometry. Initially, two reservoirs are separated by a lock gate which is of 75
meters wide. The water levels are 10 meters and 5 meters, respectively. The reservoir on the left has higher
water level. At t = 0, the lock gate is opened. The evolution of the water level is simulated using the second
order (p1) DG-CVS solver. The resolution of the computational mesh is 2.5 meters. Figure 18 shows the
contour lines and carpet view of the water level at t = 7.2 seconds.
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Figure 14: Water element and momentum along the symmetry line at various instants. Left: water elevation
and right: momentum.
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Figure 15: Carpet view of the evolution of Gaussian pulse depth perturbation. Clockwisely, t = 0, t = 0.5,
t = 1.0 and t = 2.0.

7 Major Progress #4: Solving Level Set Equation
The DG-CVS solver has been also extended to solve the level-set equation to accurately resolve the interface
between fluids. In the level set method, the interface is represented by the zero level set C(t) = {x| (x, t) = 0}
of a level set function  (x, t).  is often taken to be the signed distance function to the interface. The level
set equation can be expressed as

 
t

+ v ·r = 0 (34)

where v is the velocity field which evolves the interface. Equation (34) can be rewritten in conservative form

 
t

+r · ( v) =  r · v (35)

Several examples are provided here to demonstrate the capability of the DG-CVS solver to solve the
level-set equation. In all the examples, the initial signed distance field is narrowed by the following

 =

8

>

<

>

:

�✏ if  < �✏
 if � ✏    ✏

✏ if  > ✏

where✏ is chosen to be 0.1. This strategy is based on the assumption that the interface evolution often occurs
within a narrow band.

7.1 Rotation of an off-center circular fluid body

The first example is about the rotation of a circular fluid body. The circular fluid body of radius 0.15 is
centered at the location (0.5, 0.75). The circle is rotated by a velocity field v = (u, v) given by:

u = 2⇡(y � 0.5), and v = �2⇡(x� 0.5). (36)

Such a velocity field completes one revolution per unit time. Figure 19 is the initial signed distance field
where the zero level set is also indicated. The simulation is done on a 40 ⇥ 40 mesh. Figures 20 and 21
compares the p1 and p3 solutions at various times. Again, p3 solution preserves the circular shape better
than the p1 solution.
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Figure 16: Line plots of the evolution of Gaussian pulse depth perturbation.

Figure 17: Geometry of the 2-D dam break problem.
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Figure 18: Contour lines and the carpet view of the water elevation of the 2-D dam break problem at t = 7.2s.

Figure 19: Initial signed distance field of an off-center circular fluid body.
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(a) t = 0.0.

(b) t = 1.0.

(c) t = 2.0.

(d) t = 3.0.

Figure 20: Rotation of an off-center circular fluid body on a 40 ⇥ 40 rectangular mesh. Left column: p1
solutions and right column: p3 solutions. (to be continued)
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(a) t = 4.0.

(b) t = 5.0.

Figure 21: Rotation of an off-center circular fluid body on a 40 ⇥ 40 rectangular mesh. Left column: p1
solutions and right column: p3 solutions. (continued)
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Figure 22: Zalesak disk. Initial level set is the signed distance to the disk.

7.2 Rotation of the slotted Zalesak disk

This another well known example is the rigid rotation of the Zalesak disk [19]. The initial interface is a circle
centered at (0.5, 0.75) with a notch of width and depth 0.05 and 0.25, respectively. The velocity field is the
same as the previous case, i.e. (36).

The initial level set function is initialized as the signed distance to the disk (Fig. 22). The zero level
set indicates the interface location. Figure 23 shows the fourth order (p3) solution using the solver based
on DG-CVS. The computational mesh contains 50 ⇥ 50 rectangular cells. The time step in the simulation
is �t = 0.00125. 800 time steps were finish one revolution. Compared to the exact solution, the smearing is
very small which indicates the small numerical dissipation of this high order scheme.

7.3 Shearing of a circular bubble

The last example is to simulate the deformation of a circular bubble of radius 0.15 centered at (0.5, 0.75).
The circle is deformed due to the following velocity field [20]:

u = � sin(2⇡y) sin2(⇡x) cos(⇡t/T ), and v = sin(2⇡x) sin2(⇡y) cos(⇡t/T ) (37)

which are obtained from (�@ /@y, @ /@x) where  is the following stream function

 =

1

⇡
sin

2

(⇡x) sin2(⇡y).

At t = T/2, the velocity starts to reverse direction and at time t = T , the original circle is expected to be
restored.

The velocity field given by (37) represents a vortex which stretch the circular fluid body into a thin
filament toward the vortex center. The simulation is performed on a relatively coarse 40 ⇥ 40 mesh. Here
T = 4. Figures 24 and 25 shows the fourth order (p3) evolution of the signed distance field and the zero
level set at various times. At t = 0.5T = 4, the bubble starts to restore its shape. At t = 4.0, the bubble
recovers its original circular shape. The comparison with the exact solution shows the accuracy of the current
method.

8 Major Progress #5: Solving Moving Mesh Problems
The ultimate goal of developing DG-CVS based solvers is to solve fluid flow problems involving moving
boundaries. Due to the space-time formulation of DG-CVS, DG-CVS automatically satisfies the so-called
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Figure 23: Rotation of Zalesak disk. The locations of the disk at several instants within one revolution.
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(a) t = 0.25. (b) t = 0.5.

(c) t = 1.0. (d) t = 1.5.

(e) t = 2.0. (f) t = 2.5.

Figure 24: p3 solution of the shearing of a circular bubble by a vortex on a 40⇥ 40 mesh. T = 4.
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(a) t = 3.0. (b) t = 3.5.

(c) t = 3.75. (d) t = 4.0.

Figure 25: p3 solution of the shearing of a circular bubble by a vortex on a 40⇥ 40 mesh. T = 4.(continued)
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Figure 26: Meshes used in the simulation. Left: 20 ⇥ 20 rectangular mesh qua-20. Right: unstructured
triangular mesh tri-20 with similar edge resolution.

geometric conservation law (GCL) by incorporating the mesh motion effect into the unit normal of the
space-time side surfaces of the conservation element during the enforcement of space-time fluxes. Therefore,
any extra sophisticated techniques used to enforce the GCL in other semi-discrete high-order methods can
be avoided.

A simple test is presented here to demonstrate the moving-mesh capability of the current DG-CVS
solver. This test is an isentropic vortex advection problem on a 2D square domain [0, 10]⇥ [0, 10]. The initial
conditions are given as an isentropic vortex with the center at (5, 5), i.e.,

u(x, y, 0) = 1� ✏

2⇡
e0.5(1�r

2
)

(y � 5) (38a)

v(x, y, 0) = 1 +

✏

2⇡
e0.5(1�r

2
)

(x� 5) (38b)

T (x, y, 0) = 1� (� � 1)✏2

8�⇡2

e1�r

2

(38c)

S(x, y, 0) = 1 (38d)

where u, v, T, and S are x-velocity, y-velocity, temperature and entropy, respectively. ✏ = 5 represents the
vortex strength and r2 = (x � 5)

2

+ (y � 5)

2. The periodic boundary conditions on both directions are
assumed. The density ⇢ and the pressure P can be obtained via

⇢(x, y, 0) =

✓

T (x, y, 0)

S(x, y, 0)

◆

1/(��1)

, P (x, y, 0) = ⇢(x, y, 0)T (x, y, 0)

where � = 1.4 is the ratio of specific heats. It can be shown that the Euler equations with the above initial
and boundary conditions allows an exact solution which is the initial solution advected with the speed (1, 1)
in the diagonal direction. With periodic boundary conditions, the vortex will come back to the center of the
domain, its original location, at t = 10.

Both rectangular and triangular meshes are tested. Since we are going to present the fourth order (p3)
solutions in this paper, relatively coarse meshes are used. The meshes are designated as rec-20 and tri-20
(cf. Fig. 26) where each boundary of the domain contains equally spaced 20 edges. The interior elements of
the triangular meshes are unstructured and generated by EasyMesh [21].

In the simulation, the grid points on the boundaries are fixed and the interior grid points move according
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Figure 27: Comparison of the p3 density field at t = 8 of the vortex advection problem on mesh qua-20.
Left: stationary mesh. Right: moving mesh.

to

x(⇠, ⌘, t) = ⇠ + sin(0.2⇡⇠) sin(0.2⇡⌘) sin(�0.2⇡t) (39a)
y(⇠, ⌘, t) = ⌘ + sin(0.2⇡⇠) sin(0.2⇡⌘) sin(�0.2⇡t) (39b)

where (⇠, ⌘) is the spatial coordinate in the fixed reference domain which is the same as the physical domain
at t = 0. The above mesh motion equations also ensure that the grid points on the vertical and horizontal
center lines (⇠ = 5 and ⌘ = 5, respectively) are not moving with time.

For fair comparison, the time step used in all simulations is taken as �t = 0.02, regardless of whether the
mesh is rectangular or triangular and whether the mesh is stationary or moving. Only the fourth order (p3)
results will be provided.

Figure 27 shows the comparison of the density fields at t = 8 on the stationary and the moving quadrilat-
eral meshes. As can be seen, the solution on the moving mesh is visually as smooth as the one on stationary
mesh. Figure 28 shows similar density fields on triangular meshes.

Figures 29 and 30 compare the density distribution at t = 10 along the horizontal center line (y = 5) of
the domain with the exact solution for all simulations. The accuracy is clearly demonstrated.

Finally, we present the quantitative error comparison between all simulations in Table 14. Here, l
1

, l
2

and l1 errors are evaluated at the discrete vertices of the mesh. The L
2

error is the integrated error over
the top surfaces of the vertex-level CE. Recall that all simulations use the same time step �t = 0.02. As
can be seen, for the same qua-20 or tri-20 meshes, the errors on moving meshes are larger than those on
stationary meshes. The is expected because the current prescribed mesh motion is independent from the
solution. Mesh motion causes the loss of grid resolution compared with the uniform stationary mesh (cf.
Figs. 27 and 28). In addition, the errors on triangular meshes are smaller than those on rectangular meshes.
This is because there are more cells on the triangular mesh even if its edge resolution is comparable to that
of the rectangular mesh. Therefore, triangular meshes yield more accurate results at the price of higher
computational cost.
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Figure 28: Comparison of the p3 density field at t = 8 of the vortex advection problem on mesh tri-20.
Left: stationary mesh. Right: moving mesh.
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Figure 29: Comparison of the p3 density distribution of the vortex advection problem at t = 10 along the
horizontal center line of the domain on mesh qua-20. Left: stationary mesh. Right: moving mesh.
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Figure 30: Comparison of the p3 density distribution of the vortex advection problem at t = 10 along the
horizontal center line of the domain on mesh tri-20. Left: stationary mesh. Right: moving mesh.
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Table 14: Comparison of the p3 density errors of the isentropic vortex advection problem on fixed and moving
meshes.

fixed qua-20 mesh moving qua-20 mesh fixed tri-20 mesh moving tri-20 mesh

l1-error 4.32e-05 2.54e-04 2.13e-05 8.41e-05

l2-error 1.19e-04 4.22e-04 3.77e-05 1.80e-04

l1-error 1.50e-03 3.36e-03 4.82e-04 1.68e-03

L2-error 1.12e-04 4.58e-04 4.15e-05 1.84e-04

Force Office of Scientific Research or the U.S. Government. The authors are also grateful to the School of
Engineering and the Department of Computer Engineering at Jackson State University for their support.
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2010, Orlando, FL. AIAA Paper 2010-0544.

9. S. Tu, “A Solution Limiting Procedure for an Arbitrarily High Order Space-Time Method,” presented
at the 19th AIAA Computational Fluid Dynamics Conference, Jun. 22-25, 2009, San Antonio, TX,
AIAA Paper 2009-3983.

10. S. Tu, “A High-order Space-time Method for Compressible Euler Equations,” presented at the 47th
AIAA Aerospace Science Meeting, Jan. 5-8, 2009, Orlando, FL. AIAA Paper 2009-1335.

11 Personnel Supported
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12 AFOSR Point of Contact
Dr. Fariba Fahroo, Program Manager, Computational Mathematics, AFOSR/NL, 875 North Randolph
Street Suite 325, Room 3112 Arlington, VA 22203, (703) 696-8429, Fax (703) 696-8450, DSN 426-8429,
fariba.fahroo@afosr.af.mil.

13 Interactions/Transitions
Conference presentations since April 2010 when the project started:

1. One talk at the AIAA Fluid Dynamics Conference in New Orleans, LA, June 2012. (speaker: S. Tu).
2. Two talks at the 50th Aerospace Science Meetings, Jan. 9-12, 2012, Nashville, TN. (speaker: S. Tu).
3. One talk at the first High Order CFD Methods Workshop, Jan. 7-8, 2012, Nashville, TN. (speaker: S.

Tu).
4. One talk at the 7th International Congress on Industrial and Applied Mathematics (ICIAM 2011),

July 18-22, 2011, Vancouver, BC, Canada. (speaker: S. Tu).
5. One talk at the 17th AIAA/CEAS Aeroacoustics Conference, Portland, Oregon, June, 2011. (speaker:

S. Tu).
6. One talk at the 49th AIAA Aerospace Science Meeting, January, 2011, Orlando, FL. (speaker: S. Tu).
7. One invited talk in the Department of Mathematics at the Air Force Institute of Technology, October

7, 2010, Dayton, OH. (speaker: S. Tu)
8. One invited talk at the Engineering Professional Development Seminar, IEEE Mississippi Section,

August 20, 2010. (speaker: S. Tu)

14 Changes in Research Objectives
None.

15 Change in AFOSR Program Manager
None.

16 Extensions Granted or Milestones Slipped
None.

17 New Discoveries
None patentable.
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